
ARP and UDP Interaction
Robert Goodwin
Wed, Jan 13, 2010

Network monitoring by MISS
In recent months, the local application MISS has been used to monitor missing data request-

related datagrams for Linac. It monitors the ACNETERR data stream in data server node0600, as
nearly all Linac devices are described in the Acnet database as having LIP600 as a source node.
One of the errors monitored by the GETS32 protocol support is whether an expected reply is
missing from a contributing node. If it would have been the first reply that is missing, the error
code is “36 -8”, and these are the errors being monitored by MISS as it runs in test node0509,
collecting data stream records of Acnet errors at 15 Hz.

When a “36 -8” error is found freshly written to the data stream, MISS collects several types of
information quickly, including the network diagnostics from both the server node and the
“missing” node. All this is assembled into a 2048-byte record and placed into a circular buffer that
has room for 8 such entries. When I notice that MISS has written a new record, I print it out for
analysis. Such records have not been occurring even once a day of late. (As of this writing, more
than 6 days elapsed between the last two occurrences.)

The records indicate some commonality; they are not random noise. Recent examples occasionally
occur during Big Saves, when a large number of data requests are being handled. It takes from 1-4
seconds to read some 15000 device properties from Linac, so there is indeed heavy network traffic.
But more than occurring during Big Saves, these records show occasions when a large data request
is handled, one large enough to require fragmentation for delivery on ethernet.

Server node action
When the server node receives a request, it typically includes devices from more than one

front end node, so the server node multicasts the same message it just received so that it reaches
all Linac front ends. Each front end previews the request message to see whether it needs to be a
contributing node; i.e., if any of its own devices is included in the request. If so, it initializes a
request to handle it, and it causes an update to be performed right away and its portion of the
reply data returned to the server node. The server node sees all the replies from all contributing
nodes and copies the reply data into the complete reply buffer. As soon as the last reply comes in,
the server delivers the complete reply to the host.

But if a contributing node’s reply seems to be missing after a rather generous couple of 15 Hz
cycles of patience, a “36 -8” error condition is declared for that missing node’s data, and the
complete reply message is returned with holes for that expected from the missing node. Every
time the server node returns error status in a reply message to the host, it writes a record into the
ACNETERR data stream that includes the time-of-day, the missing node, the status code, the size of
the reply data, and the host node. It is this record that the test node running MISS monitors.

Fragmentation
It is commonly accepted in IP implementations that when a UDP datagram is to be sent to a

node for which there is no current ARP table entry—and an ARP request message must first be
sent to find out the target’s physical address—that upon receipt of the ARP reply, the datagram
that was saved in a temporary buffer is delivered. The problem comes when the datagram to be
sent is large enough so that it must be fragmented. In that case, only one packet buffer holds what

is to be delivered, which likely holds only the final fragment. The end result is that only that final
fragment is sent, and therefore, the target node cannot make sense of it at all. It eventually times
out waiting for all the fragments and frees up its buffers, also incrementing a diagnostic counter
when this happens.

Does vxWorks exhibit this behavior in its implementation of IP? I think so, but I have no hard
evidence, so far. I am not sure of the time-out period for an ARP table entry, but it may be 20
minutes, from what I see on the web.

More such errors?
Why do we not have more errors from this problem than we currently see? When the

server node gets a large request message datagram from a host, and it finds that more than one
node is represented in the device list (by scanning the second word of each SSDN), it sends the
datagram to a multicast destination IP address, as stated above. ARP does not come into play for
multicast datagrams, so this problem cannot occur for such requests. Only when all devices in the
large datagram are from the same node does the server forward the request to that single target
node. This may not occur all that often. The maximum GETS32 request message is for 75 device
properties. Since each request packet is 20 bytes under this protocol, we have 1500 bytes of request
packets alone. Add space for various headers, and of course it must be fragmented.

Only when a request is for data all from the same actual front end will the server node forward a
unicast fragmented datagram. Further, only if node0600 at that moment has no ARP table entry
for that front end will the problem occur. Nonetheless, it does happen occasionally, and when it
does, errors for 75 device-properties are posted to the web, all because of this single request
message. (This actually happened on 01/13/10 at 2245.)

What can be done?
One way to limit the chances of this happening, at least as a result of Big Saves, would be to

limit the number of device properties in a single request, so that fragmentation cannot occur. If the
maximum number were 70, rather than the current 75, there would be no fragmentation of the
datagram carrying the request message. The small difference would have almost no impact on the
total time required for a Big Save.

Settings restore
Several years ago, there were problems as a result of settings restore, the symptom being

that sometimes the host did not receive an acknowledgment of the settings. After some study, it
was determined that this same characteristic related to fragmentation was occurring, such that a
large datagram containing settings would not make it to the target node. A Sniffer was used that
indeed showed an isolated fragment was sent. As a workaround, the host software was modified
so that it would not cause fragmentation when it built a SETDAT message. The suggestion above is
based on the same approach, to try not to send requests that require fragmentation.

ARP and UDP Interaction p. 2

